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ADAPTIVE CONTROL BASED ON 
RETROSPECTIVE COST OPTIMIZATION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Application No. 61/201,035 filed on Dec. 5, 2008. The entire 
disclosure of the above application is incorporated herein by 
reference. 

This application is also related to U.S. Pat. No. 6,208,739, 
issued on Mar. 27, 2001, which is incorporated herein by 
reference. 

GOVERNMENT SUPPORT 

This invention was made with government support under 
Grant No. NNX08AB92A awarded by NASA. The govern-
ment has certain rights in the invention. 

FIELD 

The present disclosure relates to methods and control sys-
tems for using a digital adaptive control algorithm and, more 
particularly, relates to methods and control systems for using 
a digital adaptive control algorithm that are based on a retro-
spective correction feedback filter. 

BACKGROUND AND SUMMARY 

This section provides background information related to 
the present disclosure which is not necessarily prior art. This 
section also provides a general summary of the disclosure, 
and is not a comprehensive disclosure of its full scope or all of 
its features. 

Unlike robust control, which chooses control gains based 
on a prior, fixed level of modeling uncertainty, adaptive con-
trol algorithms tune the feedback gains in response to the true 
dynamical system (or "plant"), and commands and distur-
bances (collectively "exogenous signals"). Generally speak-
ing, adaptive controllers require less prior modeling informa-
tion than robust controllers, and thus can be viewed as highly 
parameter-robust control laws. The price paid for the ability 
of adaptive control laws to operate with limited prior model-
ing information is the complexity of analyzing and quantify-
ing the stability and performance of the closed-loop system, 
especially in light of the fact that adaptive control laws, even 
for linear plants, are nonlinear. 

Stability andperformance analysis of adaptive control laws 
often entails assumptions on the dynamics of the plant. For 
example, a widely invoked assumption in adaptive control is 
passivity, which is restrictive and difficult to verify in prac-
tice. A related assumption is that the plant is minimum phase, 
which may entail the same difficulties. In fact, sampling may 
give rise to nonminimum-phase zeros whether or not the 
continuous-time system is minimum phase, which must ulti-
mately be accounted for by any adaptive control algorithm 
implemented digitally in a sampled-data control system. 
Beyond these assumptions, adaptive control laws are known 
to be sensitive to unmodeled dynamics and sensor noise, 
which necessitates robust adaptive control laws. 

In addition to these basic issues, adaptive control laws may 
entail unacceptable transients during adaptation, which may 
be exacerbated by actuator limitations. In fact, adaptive con-
trol under extremely limited modeling information, such as 
uncertainty in the sign of the high-frequency gain, may yield 
a transient response that exceeds the practical limits of the 

2 
plant. Therefore, the type and quality of the available model-
ing information as well as the speed of adaptation must be 
considered in the analysis and implementation of adaptive 
control laws. 

5 	Adaptive control laws have been developed in both con- 
tinuous-time and discrete-time settings. In the present appli-
cation we consider discrete-time adaptive control laws since 
these control laws can be implemented directly in embedded 
code for sampled-data control systems without requiring an 

io intermediate discretization step that may entail loss of stabil-
ity margins. 

According to some prior art, references on discrete-time 
adaptive control include a discrete-time adaptive control law 
with guaranteed stability developed under a minimum-phase 

15 assumption. Extensions based on internal model control and 
Lyapunov analysis also invoke this assumption. To circum-
vent the minimum-phase assumption, the zero annihilation 
periodic control law uses lifting to move all of the plant zeros 
to the origin. The drawback of lifting, however, is the need for 

20 open-loop operation during alternating data windows. An 
alternative approach, is to exploit knowledge of the nonmini-
mum-phase zeros. Knowledge of the nonminimum-phase 
zeros is used to allow matching of a desired closed-loop 
transfer function, recognizing that minimum-phase zeros can 

25 be canceled but not moved, whereas nonminimum-phase 
zeros can neither be canceled nor moved. Knowledge of a 
diagonal matrix that contains the nonminimum-phase zeros is 
used within a MIMO direct adaptive control algorithm. 
Finally, knowledge of the unstable zeros of a rapidly sampled 

30 continuous-time SISO system with a real nonminimum-
phase zero is used in some instances. 

Motivated by the adaptive control laws given in some 
instances, the goal of the present application is to develop a 
discrete-time adaptive control law that is effective for non- 

35 minimum-phase systems. In particular, we present an adap-
tive control algorithm that extends the retrospective cost opti-
mization approach. This extension is based on a retrospective 
cost that includes control weighting as well as a learning rate, 
which can be used to adjust the rate of controller convergence 

4o and thus the transient behavior of the closed-loop system. 
Unlike some instances, which use a gradient update, the 
present application uses a Newton-like update for the control-
ler gains as the closed-form solution to a quadratic optimiza-
tion problem. No off-line calculations are needed to imple- 

45 ment the algorithm or control system. A key aspect of this 
extension is the fact that the required modeling information is 
the relative degree, the first nonzero Markov parameter, and 
nonminimum-phase zeros, if any. Except when the plant has 
nonminimum-phase zeros whose absolute value is less than 

50 the plant's spectral radius, we show that the required zero 
information can be approximated by a sufficient number of 
Markov parameters from the control inputs to the perfor-
mance variables. No matching conditions are required on 
either the plant uncertainty or disturbances. 

55 	In some embodiments, a goal of the present application is 
to develop the RCF adaptive control algorithm and demon-
strate its effectiveness for handling nonminimum-phase 
zeros. To this end we consider a sequence of examples of 
increasing complexity, ranging from SISO, minimum-phase 

60 plants to MIMO, nonminimum-phase plants, including stable 
and unstable cases. We then revisit these plants under off-
nominal conditions, that is, with uncertainty in the required 
plant modeling data, unknown latency, sensor noise, and satu-
ration. These numerical examples provide guidance into 

65 choosing the design parameters of the adaptive control law in 
terms of the learning rate, data window size, controller order, 
modeling data, and control weightings. 
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According to the principles of the present teachings, a 
discrete-time adaptive control law or algorithm for stabiliza-
tion, command following, and disturbance rejection that is 
effective for systems that are unstable, MIMO, and/or non-
minimum phase. The adaptive control algorithm includes 
guidelines concerning the modeling information needed for 
implementation. This information includes the relative 
degree, the first nonzero Markov parameter, and the nonmini-
mum-phase zeros. Except when the plant has nonminimum-
phase zeros whose absolute value is less than the plant's 
spectral radius, the required zero information can be approxi-
mated by a sufficient number of Markov parameters. No 
additional information about the poles or zeros need be 
known. We present numerical examples to illustrate the algo-
rithm's effectiveness in handling systems with errors in the 
required modeling data, unknown latency, sensor noise, and 
saturation. 

Further areas of applicability will become apparent from 
the description provided herein. The description and specific 
examples in this summary are intended for purposes of illus-
tration only and are not intended to limit the scope of the 
present disclosure. 

DRAWINGS 

The drawings described herein are for illustrative purposes 
only of selected embodiments and not all possible implemen-
tations, and are not intended to limit the scope of the present 
disclosure. 

FIG. 1 depicts a closed-loop system including adaptive 
control algorithm with the retrospective correction filter 
(dashed box) for p=1. 

FIG. 2 depicts roots ofp 20 (q) for the stable, non-minimum-
phase plant in Example 5.1. The dashed line denotes p(A) —  
0.95. Note that the roots outside p(A) are close to the outer 
nonminimum-phase zeros —1.5 and 1.25. The remaining roots 
are either located at the origin or form an approximate ring 
with radius close to p(A). 

FIG. 3 depicts roots of p 25 (q) for the unstable, nonmini-
mum-phase plant in Example 5.2. The dashed line denotes 
p (A)=1.4. Note that the root of p25  (q) outside p(A) is close to 
the outer nonminimum-phase zero —1.5. However, the non-
minimum-phase zero 1.25 is not approximated by a root of 
p25(q). The remaining roots are either located at the origin or 
form an approximate ring with radius close to p(A). 

FIG. 4 depicts roots of p 25 (q) for the unstable, nonmini-
mum-phase plant in Example 5.3. The dashed line denotes 
p(A)-0.95, where A is the dynamics matrix of a minimal 
realization of Gzu . Note that the roots outside p(A) are clo se to 
the inner and outer nonminimum-phase zeros of Gzu . The 
remaining roots are either located at the origin or form an 
approximate ring with radius close to p(A). 

FIG. 5 depicts closed-loop response of the unstable, mini-
mum-phase, SISO plant in Example 7.1 using the nonmini-
mum-phase-zero-based construction of B zu. The control is 
turned on at 1~-0. The controller order is n ,-2  with parameters 
p--1 and a(k)=10. 

FIG. 6 depicts closed-loop response of the unstable, mini-
mum-phase, SISO plant in Example 7.2 with a step com-
mand. The control is turned on at k=200. The controller order 
is n,-10 with parameters p=5, a(k)=5, and x-10 with B zu  
given by (56). 

FIG. 7 depicts closed-loop response of the stable, mini-
mum-phase, SISO plant in Example 7.1 with a step command 
and sinusoidal disturbance. The control is turned on at k=200. 
The controller order is n, -20 with parameters p=1, a(k)=50, 
and r=3 with Bzu  given by (56). 

4 
FIG. 8 depicts closed-loop disturbance-rejection response 

of the stable, minimum-phase, SISO plant in Example 7.4. 
The control is turned on at k=200. The controller order is 
n 15 with parameters p=1, a(k)=25, and r°3 with B zu  given 

5  by (56). 
FIG. 9 depicts time history of the components of 0(k) for 

the stable, minimum-phase, SISO plant in Example 7.4. The 
control is turned on at k=200. 

FIG. 10 depicts bode magnitude plot of the adaptive con- 
10 troller in Example 7.4 at k=1000 samples. The adaptive con-

troller places poles at the disturbance frequencies Q, -7c/10 
rad/sample and Q 2 137t/50 rad/sample. The controller magni-
tude IG,(e' ~')I is plotted for Q up to the Nyquist frequency 

15  Q yq=7t rad/sample. 
FIG. 11 depicts closed-loop disturbance-rejection 

response of the stable, nonminimum-phase, SISO plant in 
Example 7.5. The control is turned on at k=200. The control-
ler order is n,15 with parameters p=1, a(k)=25, and r=7 with 

20 Bzu  given by (56). 
FIG. 12 depicts closed-loop disturbance-rejection 

response of the stable, nonminimum-phase, SISO plant in 
Example 7.5. The control is turned on at k=200. The control-
ler order is n,15 with parameters p=1, a(k)=2500, and r-7 

25 with Bzu  given by (56). Compared to FIG. 11, the initial 
transient is reduced at the expense of convergence speed. 

FIG. 13 depicts closed-loop disturbance-rejection 
response of the unstable, minimum-phase, SISO plant in 
Example 7.6. The control is turned on at k=200. The control- 

30 ler order is n,=15  with parameters p 1, a(k)=25, and r -10 
with Bzu  given by (56). 

FIG. 14 depicts closed-loop disturbance-rejection 
response of the stable, minimum-phase, two-input, two-out-
put plant in Example 7.7. The control is turned on at k=200. 

35 The controller order is n ,-15  with parameters p 1, a(k)=1, 
and x-10 with Bzu  given by (56). 

FIG. 15 depicts closed-loop disturbance-rejection 
response of the stable, nonminimum-phase, two-input, two-
output plant in Example 7.8. The control is turned on at 

4o k=200. The controller order is n,-15  with parameters p=2, 
a(k)=1, and r-8 with B zu  given by (56). 

FIG. 16 depicts closed-loop disturbance-rejection 
response of the unstable, nonminimum-phase, two-input, 
two-output plant in Example 7.9. The control is turned on at 

45 k=200. The controller order is n ,-10  with parameters p=1, 
a(k)=1, and x-10 with Bzu  given by (56). 

FIG. 17 depicts closed-loop performance comparison of 
the stable, nonminimum-phase, SISO plant in Example 7.5 
with multiplicative error in B. We take n, -10, p=1, and a(k) 

50 =1000. The multiplicative error r), which is used to obtain the 
Markov parameters for B zu  given by (56) with x-10, is varied 
between 0.3 and 5. The best performance is obtained for r1= 1 , 
which corresponds to the true value of B. 

FIG. 18 depicts closed-loop performance comparison of 
55 the stable, nonminimum-phase, SISO plant in Example 8.3 

with a multiplicative error in the nonminimum-phase zero 2. 
We take n,-10,  p=1, and a(k)=25. The nonminimum-phase-
zero multiplicative error q, which is used to construct B zu  
given by (52), is varied between 0.75 and 2.5. The best per- 

60 formance is obtained for r1=1.05, which is close to the true 
value of the nonminimum-phase zero. 

FIG. 19 depicts closed-loop response of the unstable, mini- 
mum-phase, SISO plant in Example 7.6 with random white 
noise added to the measurement. The control is turned on at 

65 k-0. The controller order is n 15 with parameters p=1, a(k) 
=25, and r=3 with Bzu  given by (56). The performance vari- 
able is degraded to the level of the additive sensor noise v(k). 
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FIG. 20 depicts closed-loop disturbance-rejection 
response of the stable, minimum-phase, SISO plant in 
Example 7.4, where both the actuator and sensor are saturated 
at ±2. The control is turned on at k=200. The controller order 
is n,-15 with parameters p=1, a(k )=25, and r°3 with Bzu  
given by (56). The saturations degrade steady-state perfor-
mance. 

FIG. 21 depicts closed-loop step-command -following 
responses of the stable, minimum-phase, SISO plant in 
Example 7.4 with and without actuator saturation at ±0.1. The 
control is turned on at k=200. The controller order is n,—  I5 
with parameters p=1, a(k)=25, and r=3 with B zu  given by 
(56). 

FIG. 22 depicts model reference adaptive control problem 
with performance variable z. 

FIG. 23 depicts closed-loop model reference adaptive con-
trol of Boeing 747 longitudinal dynamics. The controller 
order is n,-10 with parameters p=1, a(k )=40, and x-10 with 
Bzu  given by (56). The controller is turned on at t -0 sec, and 
the performance variable converges within about 20 sec. 

FIG. 24 depicts closed-loop model reference adaptive con-
trol of missile longitudinal dynamics. The control effective-
ness X=1, and thus the plant and reference model are identical. 
Therefore, the adaptive control input u_-0. 

FIG. 25 depicts missile longitudinal dynamics with control 
effectiveness X-0.50 and adaptive controller turned off, that 
is, autopilot -only control. 

FIG. 26 depicts closed-loop model reference adaptive con-
trol of missile longitudinal dynamics with control effective-
ness X-0.50. The augmented controllers provide better per-
formance than the autopilot -only simulation. 

FIG. 27 depicts closed-loop model reference adaptive con-
trol of missile longitudinal dynamics with control effective-
ness X-0.25. After a transient, the augmented controllers 
stabilize the system, whereas the autopilot -only simulation 
fails. Note that the system is stabilized despite the total con-
trol input a reaching the actuator saturation level of ±30 deg. 

FIG. 28 depicts closed-loop model reference adaptive con-
trol of missile longitudinal dynamics with control effective-
ness X-0.25. The adaptive controller is initialized with the 
converged gains from the 50% control effectiveness case. The 
initial transient is reduced as compared with initializing the 
control gains to zero. In this case, the actuator saturation level 
is never reached. 

Corresponding reference numerals indicate corresponding 
parts throughout the several views of the drawings. 

DETAILED DESCRIPTION 

Example embodiments will now be described more fully 
with reference to the accompanying drawings. Example 
embodiments are provided so that this disclosure will be 
thorough, and will fully convey the scope to those who are 
skilled in the art. Numerous specific details are set forth such 
as examples of specific components , devices, and methods, to 
provide a thorough understanding of embodiments of the 
present disclosure . It will be apparent to those skilled in the art 
that specific details need not be employed , that example 
embodiments may be embodied in many different forms and 
that neither should be construed to limit the scope of the 
disclosure. 

The terminology used herein is for the purpose of describ-
ing particular example embodiments only and is not intended 
to be limiting. As used herein , the singular forms "a", "an" 
and "the" may be intended to include the plural forms as well, 
unless the context clearly indicates otherwise . The terms 
"comprises," "comprising," "including," and "having," are 

6 
inclusive and therefore specify the presence of stated fea-
tures, integers, steps, operations , elements, and/or compo-
nents, but do not preclude the presence or addition of one or 
more other features , integers , steps, operations, elements, 

5  components, and/or groups thereof. The method steps, pro-
cesses, and operations described herein are not to be con-
strued as necessarily requiring their performance in the par-
ticular order discussed or illustrated, unless specifically 
identified as an order of performance. It is also to be under- 

10 stood that additional or alternative steps maybe employed. 
Problem Formulation 

We begin by first considering the MIMO discrete-time 
system 

15 	x(k+1) Ax(k)+Bu(k)+D 1 w(k), 	 (1) 

y(k)=Cx(k)+Dz w(k), 	 (2) 

20 	z(k) E 1x(k)+Eo w(k), 	 (3) 

where x(k)EW, y(k)Eky, z (k)ER ,, u(k)Ek', w (k)Ek-, and 
k?0. Our goal is to develop an adaptive output feedback 
controller under which the performance variable z is mini-
mized in the presence of the exogenous signal w. In (1)-(3), w 

25 can represent either a command signal to be followed, an 
external disturbance to be rejected , or both. For example, if 
D 1 -0 and E,;-O, then the objective is to have the output E,x 
follow the command signal —E ow. On the other hand, if D, ;-0 
and E.—O, then the objective is to reject the disturbance w 

30 from the performance variable E lx. The combined command-
following and disturbance-rejection problem is addressed 
when D, and E o  are suitably partitioned matrices. More pre-
cisely, if D i=[D 11 0], Eo [OEOZ], and 

35 

w, ((k) 

w(k) — w2(k) ~ 

H;  °= EI A i-1 B E IR'1" 1° 

65 

is nonzero. Note that, if d=1, then H1=N1,  whereas, if d?2, 
then R1 —  • • • —pd- 1 —H1 —  ... =Ha-1-0  and Fla Pd- 

40 then the objective is to have E lx follow the command —E02W2 
while rejecting the disturbance D,1wl  . Lastly, if D, and E o  are 
zero matrices, then the objective is output stabilization, that 
is, convergence of z to zero. We assume that (A, B) is stabi-
lizable, and (A, C) and (A, E l ) are detectable, and that mea- 

45 surements of y and z are available for feedback. If the com-
mand signal is included as a component of y, then the adaptive 
controller has a feedforward architecture. For disturbance-
rejection problems, the controller does not require measure-
ments of the external disturbance w. 

50 ARMAX Modeling 
Consider the ARMAX representation of (1), (3), given by 

(4) 

55 	z(k)=E — a;z(k — i)+E13;u(k — i)+EYsw(k — i), 
=1 	 =1 	 =o 

where a l , . • , OLER, 
R1, 

 . • , Rn E R "', and  yo, • , Y,EW" ~w. 
We define the relative degree d?I as the smallest positive 

60 integer i such that the ith Markov parameter 
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Letting the data window size p be a positive integer, we is the controller gain matrix, and the regressor vector ~(k) is 
define the extended performance vector z(k)ERPZz  and ul(k)E 

 given by 
Rq`z'by 

5 y(k — 1) (13)  

z(k) u(k — 1) (5) 

Z(k) °  U, (k) ° 

z(k - :P  + 1) 	 u(k — i,) 

a 
@(k) = 

y(k — n,) 
e IRndlu+ly) 

u(k — 1) 

where 
10 

u(k - n,) 

A We define the extended control vector U(k)e RP` z' by 
=— g, 	n + p 	1. 

15 

The data window size p has a small but noticeable effect on 
transient behavior. Now, (4) can be written in the form u(k -1) (14)  

Z(k)— W_ $ (k)+B_UI(k), 	 (6) U(k)  

where 	W_ERP z=" [q z=+ (q,+ 1)zw1 	Bzu e][8PZ  q,Z., 	and 	~_E 20  u(k- 
Rq,zz+(q,+1)zw are given by 

—a1 Llz 	... 	—an[lz 	Olzxlz 	... 	Olzxlz 	yo 	... 	yn 	Olzx lw  ... 	Olzxlw  (7)  

A Olzxlz 	 Olzx lw  

W_ = 
Olzxlz  Olzx lw  

O

pp

lzxlz 	... 	Olzxlz 	—alllz 	... 	—an[lz 	Olzxlw 	... 	Olzxlw 	yo ... 	yn 

Yl 	... 	/8n 	Olzxlu 	... 	Olzxlu  (8)  

Olzx lu  
A  Bzu = 

Olzzpxlu 

pp Olzx lu 	... 	Olzxlu 	Yl  

and 

z(k — 1) (9)  

qhzw(k) = 
z(k — P — n + 1) 

w(k) 

w(k—p—n+1) 

Note that Wzw  includes modeling information about the plant where p,?q,. Note that, if p, —q,, then U(k)=U 1 (k). From 
poles and exogenous input path, whereas B zu  includes mod- (11), it follows that the extended control vector U(k) can be 
eling information about the plant zeros. Both Wzw  and Bzu  45 written as 
have block-Toeplitz structure. 

Controller Construction 

To formulate an adaptive control algorithm for (1)-(3), we °c 	 (15) 
U(k) _ Y, La  8(k — iffi(k — i), 

use a strictly proper time-series controller of order n, such 50 
	 1_1  

that the control u(k) is given by where 

Ic 	 (10) 
u(k) _ Y,  Pi(k)u(k — i) + Y,  Q; (k)y(k — i), D(i-1)luxlu 	 (16) 

i=1 	 i=1 
Li = hu  

 p
c

lu +lu  
E ~ 

55 
O (Pc —i)du xdu  

where, for all i=1, ... , n,, P (k)ER z  " z' and Qi (k)Ek " zY. The 
controller order n, is determined by standard control guide- 
lines in terms of stabilization and disturbance rejection. The Next, we define the retrospective performance vector 

control (10) can be expressed as 2(6,k)eIlBP z by 
60 

 

u(k) = 0(k)O(k), 	 (11) 2(9, k) o N4w@zw(k) + B_ U1  (k) — B_[U(k) — U(9, k)], 	(17) where 

8(k) ° [Ql (k) ... Qac  (k)P1(k) ... P, (k)]  e Q2luxnc(lu +ly ) 	(12) 
65 	

,~"n (Z'+t) 	. 
where 6eII8 	Y 1s the surrogate controller gain matrix, 
Bzu  e RPzz"P,z-  is the surrogate input matrix, and 
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10 
-continued 

Pc 

U(9, k) _ 	LjBO(k - i) 
=1 

(18) 
b(k)  o 	 (27) 

2DT  (k)Ri  (k) f (k) + 2[0(k) ® R 12(k)] f (k) - 2[R3  (k) ® R4  (k)] vecO(k) 
5 

	

is the recomputed extended control vector . Substituting (6) 	c(k) =- fT(k)R,(k)f(k)+tr[R3(k)OT(k)R4(k)O(k)] 	
(28) 

into (17) yields 

2(6,k) -Z(k) -8=,[U(k)=fr(6,k)]. 	 (19) 10  Since M(k) is positive definite, 7(6,k) has the strict global 

	

Note that the expression for 2(6,k) given by (19) does not 	
minimizer 0(k+1) given by 

 
depend on either the exogenous signal w or the matrix W Z1N , 
which includes information about the open-loop poles as well 

	

as the transfer function from w to z. Hence, we do not need to 	 O(k + 1) _ - 
 2 

 vec [M
-1

(k)b(k)] 	 (29)  
know this model data, and , when w represents a disturbance, 15  
we do not need to assume that w is known . However, when w 
represents a command , then w can be viewed as an additional 

	

measurement y, and thus the controller has feedforward 	Equation (29) is the adaptive control update law. Note that B zn  

action. The matrix B zu  is discussed further below. 	 (which appears in f(k) and D(k)) must be specified in order to 
20  implement (29). Furthermore , (29) requires the on-line inver-

Note that (19) can be rewritten as 	 sion of a ositive-definite matrix of size n 1 (1 +1 )xn 1 (1 + 

2(b, k) = f (k) + D(k)vecb, 	 (20) 

where 

f (k) ° Z(k) - B_ U (k) e  IR 	
(21) 

Pc 

 	® 	
(22) 

D(k)_ 	, T i 	. 	
l 	 a 	a 

 

=1 

vec is the column - stacking operator , and ®represents the Kro-
necker product. 

Now, consider the retrospective cost function 

J(b, k) °= Z (b, k)Ri (k)2(b, k) + 2Z (b, k)R12(k)u(b, k + 1) + 	
(23) 

uT  (b, k + 1)R2 (k)u(b, k + 1) + tr[R 3  (k)(b - 0(k))T  R4 (k)(b - O(k))] 

where R,(k)ERP"xP", R12(k)ERP"xt  RA)ER ~"' , Rs(k) 
E

W,(Z,+ty)xn,(Z,+ty) R4(k) E k'x" 

Ri(k) R12(k) 

RT  1 2(k) R2(k) 

is positive semidefinite, R 3 (k) and R4(k) are positive definite, 
and 

u(b, k) °= bO(k). 

Substituting (20) into (23) yields 

J (b, k) = (vecb) T  M (k)vecb + b  (k)vecb + c(k) 
	 (25) 	

z(k)
' 
 [4z  01'xI'  ... O"x1z ]Z(8(k), k). 

	 (36) 

where 

M(k) °= DT  (k)Ri (k)D(k) + 	
(26) 

65 In the particular case z=y, using a in place of y in the regressor 
2DT  (k) [OT  (k) ® R12 (k)] + [&)OT (k)] ® R2 (k) + R3  (k) ® R4(k) 	 vector (13) yields faster convergence. Therefore, for z=y, we 

redefine (13) as 

ly). 

In the special case 

25 

Ri (k) ° II,, R12(k) ° 0,1,xI,,, R2 (k) ° Oau xau , 	 (30)  

R3  (k) a(k)Icy +ay),  R4(k) o Iju, 	 (31) 
30 

where a(k)>0 is a scalar, (26)-(28 ) become 

35 	
M(k)D(k)D(k)+a(k)I r„(,,+ry), 	 (32) 

b(k)-2DT(k)f(k)-2a(k)vecO(k), 	 (33) 

c(k) f (k)f(k)+a(k)tr[O T(k)6(k)] 	 (34) 
40 

Using the matrix inversion lemma it follows that 

M i (k)es i (k)I r~r'+ry)  a i (k)D T(k)[a(k)I,,,+D(k)DT  
(k)]- 'D(k). 	 (35) 

45 
Consequently, in this case, the update law (29) requires the 
on-line inversion of a positive-definite matrix of size pl zxplz . 
We use the weightings (30), (3 1) for all of the examples in the 
present application . The weighting parameter a(k) intro- 

50 duced in (31) is called the learning rate since it affects the 
convergence speed of the adaptive control algorithm. As a(k) 
is increased, a higher weight is placed on the difference 
between the previous controller coefficients and the updated 
controller coefficients, and, as a result, convergence speed is 

(24) 55 lowered . Likewise, as a(k) is decreased, convergence speed is 
raised. By varying a(k), we can effect tradeoffs between 
transient performance and convergence speed. 

We define the retrospective performance variable 2E k ,  by 

60 
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z"(k - 1) (37) 

o ZZ"(k - n,) 
qh(k) 

u(k - 1) 

u(k - n,) 

The novel feature of the adaptive control algorithm given 
by (11) and (29) is the use of the retrospective correction filter 
(RCF) (19), as shown in FIG. 1 for p=1. RCF provides an 
inner loop to the adaptive control law by modifying the 
extended performance vector Z(k) in terms of the difference 
between the actual past control inputs U(k) and the recom-
puted control inputs U(6,k). 
Markov-Parameter Polynomial 

By recursively substituting (1) into (3), it follows that z(k) 
can be represented by 

z(k) E 1A'x(k-r)+H1u(k-1)+Hzu(k-2)+ ... +H,u(k- 
r)+H ow(k)+H 1 w(k-1)+...+H ,w(k-r), 	 (38) 

where r?d, HZ,,o  nEo, and, for all i>0, Hz 
! 

 &ElAz-1D 1 In 
terms of the backward-shift operator q -1 ,  (38) can be rewrit-
ten as 

z(k)E iA'q-'x(k)+[Hi q i+Hzq -2+.  ..  +H,q]u(k)+ 
[H o+H ,1q  1+...+H ,,']w(k) 	 (39) 

Shifting (39) forward by r steps gives 

z(k+r)=EiA'x(k)+p,(q)u(k)+W,(q)w(k), 	 (40) 

where q is the forward-shift operator,  

	

(q)oFI ,oq'+H ,iq'
-1

+H ,2q-2+...+H 	 (41) 

and 

p,(q) °Hi gr-1+H2q'-2+ ... +H,. 	 (42) 

We call p,(q) the Markov-parameter polynomial. Note that 
p,(q) is a matrix polynomial in the MIMO case and a poly-
nomial in the SISO case. Furthermore, since H 1 =... =Hd- 1=0 
when &_-2,   it follows that, for all r?d? 1, p,(q) can be written 
as 

p,(q)Hdq
,-a

+Hd+iq,-d 1+...+H,. 	 (43) 

The Markov-parameter polynomial p,(q) contains infor-
mation about the relative degree d and, in the SISO case, the 
sign of the high-frequency gain, that is, the sign of H d. We 
show below that p,(q) also contains information about the 
transmission zeros of Gzu(z) nE, (zI-A) -1  B, which is given by 

1 	 n-2 	 (44) 
G~ (z)= 	 1 	(13 1 -  +/3zz 	+...+l~n) 

Z"+a1Z"-  +...+a„ 

12 

_ 	 (46) 

Gr,.(Z) _ 	ti ' H; 
=1 

5 	 - 1 -t 

= z' P,(Z) 

10 	Consequently, the Markov-parameter polynomial p,(q) is 
closely related to the truncated Laurent expansion of G zu . 
Approximation of Outer Nonminimum-Phase Zeros 

In the case of MIMO systems, p,(q) is a matrix polynomial 
and thus does not have roots in the sense of a polynomial. We 

15 therefore require the notion of a Smith zero. Specifically, ze ( 
is a Smith zero of p,(q) if the rank of p,,(z) is less than the 
normal rank of p,(q), that is, the maximum rank of pj. ) taken 
over all fie(,;. 

20 	Definition 5.1 Let fie( be a transmission zero of G zu . 
Then, ~ is an outer zero of Gzu  if I ~ I?p(A). Otherwise, ~ is an 
inner zero of Gzu . 

The following result shows that the Smith zeros of the 
Markov-parameter polynomial p,(q) asymptotically approxi-

25 mate each outer transmission zero of G zu . 
Fact5.1 Let ~e(,bean outer transmission zero ofG zu .For 

each r, let 9t A j ~ ,,, 1 , ... , r,m } denote the set of Smith zeros 
of p,(q). Then, there exists a sequence 1 ~ , }-r=1  that con-
verges to ~ as r—oo. 

30 	The following specialization to SISO transfer functions 
shows that the roots of p,(q) asymptotically approximate each 
outer zero of Gzu . 

Fact 5.2 Consider l u  1z 1, and let ~e (,be an outer zero of 
Gzu . For each r, let %,,0{x,, 1 , .. , ~ ,, ,,- a} be the set of roots of 

35 p,(q). Then, there exists a sequence { ~ , }r=1-  that converges 
to ~ as r—oo. 

The following examples illustrate Fact 5.2 by showing that, 
as r increases, roots of the Markov-parameter polynomial 
p,(q), and hence, roots of the numerator of the truncated 

40 transfer function G,,, u, asymptotically approximate each 
outer nonminimum-phase zero of F zu . The remaining roots of 
p,(q) are either located at the origin or form an approximate 
ring with radius close to p(A). These roots are spurious and 
have no effect on the adaptive control algorithm. 

45 	Example 5.1 (SISO, nonminimum-phase, stable plant). 
Consider the plant Gzu  with d=2, H2=11  poles 0.5±0.5 j, 
-0.5±0.5 j, ±0.95, ±0.7 j, minimum-phase zeros 0.3±0.7 j, 
-0.7±0.3 j, and outer nonminimum-phase zeros 1.25, -1.5. 
Table 1 lists the approximated nonminimum-phase zeros 

50 obtained as roots of p,(q) as a function of r. Note that as r 
increases, the outer nonminimum-phase zeros are more 
closely approximated by the roots of p,(q). See FIG. 2. 

TABLE 1 
55 

In order to relate the transmission zeros of Gzu  to p,(q), the 	 Approximated nonminimum-phase zeros obtained as roots 
of p,(q) as a function oft for the stable, nonminimum-phase 

Laurent series expansion of G zu  about z-oo is given by 	 plant in Example 5.1. As r increases, the outer zeros 
are more accurately modeled. 

(45) 60 
G_ (z) - Y, z ' H;. 

t=1 

This expansion converges uniformly on all compact sub-
sets of {z:Iz1>p(A)}, where p(A) is the spectral radius ofA. 
By truncating the summation in (45), we obtain the truncated 
Laurent expansion G, of Gzu, given by  

roots,,,,,P  (p,(q)) 

6 {0.944, -1.537} 
8 {1.170, -1.502} 

10 {1.207, -1.498} 
15 {1.240, -1.499} 

20 {1.248, -1.500} 
65 	 25 {1.250, -1.500} 
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Example 5.2 (SISO , nonminimum-phase, unstable plant). 
Consider the plant Gzu  with d=2, H2=11  poles 0.5±0.5 j, 
-0.5±0.5 j, ±0.7 j, -0.95,1.4 minimum-phase zeros 0.3±0.7 j, 
-0.7±0.3 j , outer nonminimum -phase zero -1.5, and inner 
nonminimum-phase zero 1.25. FIG. 3 shows the roots of 
P25 (q). Note that the root of p 25  (q) outside p (A) is close to the 
outer nonminimum-phase zero -1.5. However, the inner non-
minimum-phase zero 1.25 is not approximated by a root of 
P25(q). The remaining roots are either located at the origin or 
form an approximate ring with radius close to p(A). 
Approximation of Inner Nonminimum -Phase Zeros 

Example 5.2 illustrates that the roots of p,,(q) approximate 
each outer nonminimum-phase zero of Gzu . However, inner 
nonminimum-phase zeros of Gzu  are not approximated by 
roots of p,,(q). To overcome this deficiency, we can use infor-
mation about the plant ' s unstable poles to create a modified 
Markov-parameter polynomial p,,(q) whose roots approxi-
mate each nonminimum-phase zero of G zu. For illustration, 
assume that the SISO plant Gzu  has a unique unstable pole 
~E (`whose absolute value is greater than all otherpoles of G zu . 
Then, we define 

k. (Z) ° z S Cz„ (z) 	
(47)  

14 
remaining roots are either located at the origin or form an 
approximate ring with radius close to p(A). 

Construction of B zu  

We present four constructions for B zu  based on the avail-
s  able modeling information. 

B,,-Based Construction 

If Bzu  given by (8) is known, then, with p,-q,, Bzu  can be 
chosen to be equal to Bzu . In this case, U(k)== ~Ujk), and (17) 

io becomes 

2(6,k) =W rpZ1A (k)+B,, Q6,k). 	 (49) 

This construction of B zu  captures information about the 
15  relative degree d, the first nonzero Markov parameter (since 

Ha (3 d), and exact values of all transmission zeros of Gzu, that 
is, both minimum -phase and nonminimum -phase transmis-
sion zeros. 

Nonminimum-Phase-Zero-Based Construction 

20 Consider lu  1z 1 and assume that H d  and the nonmini-
mum-phase zeros of Gzu  are known. Then we define the 
nonrinimum-phase-zero polynomial N(q) to be the polyno-
mial whose roots are equal to the nonrinimum-phase zeros 
of Gzu, that is, 

25 

= Czu(z) -Cz„ (z) Z 
 

=Y.z i Hi -Y',z ("1)  Hi 
i=d 	i=d 

= ,z'[Hi-sHi-1] 
i=d 

0 

30 where m?0 is the number of nonminimum -phase zeros in 
Gzu, and (3 1 , ... , P_E  R. If m-0, that is, Gzu  is minimum phase, 
then N(q)=H,. With p,-q,, the nomuinimum-phase-zero-
based construction of Bzu  is thus given by 

H1 	... Hd Y1 	... Ym  Olzxlu 	... olzxlu  olzxlu 	... olzxlu  (51) 

Olzxlu 
Bzu = 

pp

.  

olzxlu 	... 012xlu  H1 	... Hd Yl 	... pp 
Ym Odzxlu 	... olzxlu  

-continued 

=,Z' Hi 
i=d 

where, for i=1, 2, ... , H i  AH D -~Hz_ 1  are the modified Markov 
parameters, and H o O. By repeating this operation for each 
unstable pole of Gzu, the roots of the modified Markov-pa-
rameter polynomial 

P,(g) ° Hd q—d + Hd+1 q —d  1 +... + H, 	 (48)  

where H 1 = ... =Hd_ 1-0. This construction of B zu  captures 
45  information about the relative degree d, the first nonzero 

Markov parameter, and exact values of all nonminimum-
phase zeros of Gzu . In the minimum-phase case, the only 
required modeling information is H, This construction of B zu  
can be extended to the MIMO case by replacing each mini- 

50 mum-phase zero in the Smith-McMillan form of G zu  by a zero 
at z-0. 

r-MARKOV-Based Construction 

Replacing k with k-1 in (4) and substituting the resulting 
55 relation back into (4) yields a 2-MARKOV model. Repeating 

this procedure r-1 times yields the r-MARKOV model of 
(1)-(3) 

can approximate each nonminimum-phase zero of G zu . The 
following example illustrates this process. 	 60  

Example 5.3 (Ex. 5.2 with pole information ) Reconsider 
Example 5.2, where the inner nonminimum -phase zero 1.25 
is not approximated by a root of p,,(q). Using knowledge of 
the unstable pole 1 . 4 to construct p,,(q) given by (48), FIG. 4 
shows the roots of  P25  (q). Note that the roots outside p(A), 65 
where A is the dynamics matrix of a minimal realization of 
Gzu, are close to the nonminimum-phase zeros of Gzu. The 

z(k)=E'a,, iz(k-r-i +1)+ 
i=1 

_ 1  

Y' Hi u(k- l) +E'/3,, iu(k-r-i+1)+ 
i=d 	 i=1 

(52) 
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-continued 
_, 

Y , H,,, ; w(k-i)+Y, y,, ; w(k-r-i+1), 

=0 	 =, 

5 

where, for i=1, .. , n, the coefficients a, DER,  RE][8~~ ", and 

Yr,iE k,"- are given by 

A 	 A 	 A 
al,; -_ -a;, 	 13i,; _ 13;, 	 Yi,+ =Y;, 

16 
advantage in using B z" given by (56) rather than (55) is that 
(3,.,21  .. , (3,,,,, need not be known. If, however, G z" has inner 
nonminimum-phase zeros and the unstable poles of Gzu  
whose absolute values are greater than at least one inner 
nonminimum-phase zero are known, then we can replace the 
Markov parameters H i , .. , H,. in (56) by the modified 
Markov parameters H i , ... , Hr  given in (47). If these poles are 

(53) 

a 	 a  
a,,; = a,-t,tat,; +a,-t,;+t, 8.,; = a,-1,1l31,; +~3,-t,;+t, Y",; =

a 
 a,-t,tYt,; +Y"-t,;+t, 

a 	 a 	 a 

Note that Rr,,-H,.  and Y,.,,=HZ1,,,r ' We represent (52) with w -0 20 not known, then B zu  can be chosen to be either B zu, the 

	

as the r-MARKOV transfer function 	 nomuinimum-phase-zero form (51), or the r-MARKOV form 
(55). 

Note that, if the order n of the system is known and 2n+I 

c ",(z)- 
	1 	 (54) 	Markov parameters are available, then a state-space model of 

	

z"'"-,  +a,,,z"- ' +... +a,," 	 25 the system can be reconstructed by using the eigensystem 
(H, z"

-2 
 +... + Hr_, e + Hre-' +,8r,2  e

-2  +... +,8r,,) 	 realization algorithm. However, the examples considered in 
sections below use substantially fewer Markov parameters. 

The system representation (54) is nonminimal since its NUMERICAL EXAMPLES 30  
order is n+r-1, and thus (54) includes poles that are not 
present in the original model. Furthermore, note that the Nominal Cases 

coefficients of the terms z­ 2  through z" in the denominator 
are zero. These facts are irrelevant for the following develop- We now present numerical examples to illustrate the 

ment. 	Using the numerator coefficients 	of (54), 	the 35  response of the RCF adaptive control algorithm under nomi- 

r-MARKOV-based construction of B z" with p,-  q,+r-I is nal conditions. We consider a sequence of examples of 

given by increasing complexity, ranging from SISO, minimum-phase 
plants to MIMO, nonminimum-phase plants, including stable 
and unstable cases. Each SISO example is constructed such 

H, 	... 	H, 	/3,,2 	... 	8,," 	01zx," 	... 	O,zx," (55)  40  that Hd I . All examples assume y=z with ~(k) given by (37), 
0,z x," .. and, in all simulations, the adaptive controller gain matrix 

a = O(k) is initialized to zero. Unless otherwise noted, all 

Odzxd" 	... 	Odzxd" 	H, 	... 	H" 	X,2 	 Yrn 
examples assume x(0) O. 

Example 7.1 (SISO, minimum-phase, unstable plant, sta- 
45 bilization) Consider the plant Gz" with d=1, poles 0, 1.5, and 

This construction of Bz" captures information about the 
inner nonminimum-phase zero -1.25. For stabilization, we 

relative degree d, the first nonzero Markov parameter, and 
take D, and E o  to be zero matrices. Let B_ be given by (51), 
which is constructed using the first nonzero Markov param- 

exact values of all transmission zeros of G z", that is, both eter H,-I and the location of the nonminimum-phase zero 
minimum-phase andnonminimum-phase transmission zeros. 50 -1.25, that is,N(q)=q+1.25. We taken 	2,p-Landa(k)=10. 
Markov-Parameter-Based Construction The closed-loop response is shown in FIG. 5 for x(0)=[0.1 

Using the numerator coefficients of (46), the Markov-pa- 0'4]T' 

rameter-based construction of Bz" with p,-q,+r-I is given by Example 7.2 (SISO, minimum-phase, unstable plant, com- 
mand following). Consider the double integrator plant G z" 

55 with d=3, poles 0.5±0.5 j, -0.5±0.5 j, 1, 1, and a minimum- 

H, 	... 	H, 	O,zx," 	... 	O,zx," 	O,zx," 	... 	O,zx," (56)  phase zeros 0.3±0.7 j, 0.5. We consider a command-following 
problem with step command w(k)=1. With the plant realized 

a " _ 0azx"° in controllable canonical form, we take D 1-0 and E,-- 1. We 
take n,-  I0, p=5, a(k)=5, andr=l0 withB z" givenby (56). The 

O, x ," 	. . . 	O, x," 	H, 	. . . 	H" 	O, x ," 	. . . 	O, x," 60 closed-loop response is shown in FIG. 6. 
Example 7.3 (SISO, minimum-phase, stable plant, com- 

mand following and disturbance rejection). Consider the 
The Markov parameters are the numerator coefficients of a plant Gz" with d=3, poles 0.5±0.5 j, -0.5±0.5 j, ±0.9, ±0.7 j, 

truncated Laurent series expansion of G z" about z=-. The and minimum-phase zeros 0.3±0.7 j, 0.7±0.3 j, 0.5. We con- 
Markov parameters contain information about the relative 65 sider a combined step-command-following and disturbance- 
degree d and, as shownby Fact 5.2 forthe SISO case, approxi- rejection problem with command w, and disturbance w 2  
mate values of all outer nonminimum-phase zeros of G z". The given by 
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'(k 

	5 	 (57) 	 22  - 0.5z  Z4  - 0.123  - 0.2222  + 0.59z - 0.29 

w(k) _ w2 (k) _ sinQ,k 	 Dl (2) 	D,  (z)  
C~,(z) _ 

Z -  0.5 	Z3  -  1.122  + 0.88Z -  0.29  
5 	

D1(2) 	 D, (z) 

where Q, -7c/10 rad/sample. With the plant realized in con- 
trollable canonical form, we take 

	 where 

10 

Dl-[

001  

0 1J 
 andEo=[-1 01. 

The disturbance, which is not matched, is assumed to be 
unknown, and the command signal is not used directly. We 
taken,-20,p-1, a(k)=50, and r-3 with B., given by (56). The 
closed-loop response is shown in FIG. 7. 

The following examples are disturbance-rejection simula-
tions, that is, Eo-0, with the unknown two -tone sinusoidal 
disturbance 

Di  (z) = 25  + 0.124  + 0.09Z3  -0.40 1Z2  - 0.196z  - 0.2205, d = 1, 

and H1=
[ 	]. 

0 1 

0 0 

15 

Consequently, Gzu  has poles -0.5±0.5 j, 0.9, ±0.7 j, -0.5±0.5 
j, 0.9, ±0.7 j and minimum -phase transmission zeros 0.3±0.7 
j, 0.5, 0.5. We take n,-15, p=1, a(k)=1, and x-10 with Bzu  

20  given by (56). The closed-loop response is shown in FIG. 14. 
Example 7.8 (MIMO, nomuinimum -phase, stable plant, 

disturbance rejection) Consider the two-input, two-output 
plant 

sin.Ql  k 	 (5 8) 

w(k)_ _1.5sinf22k ]' 

25 
22 -0.5z 22 -z-2  

Dl   C,,(z) 	(z) 	D2(Z) _ 

	

z-0.5 	z-2 
where Q, -7c/10 rad/sample and  Q2  137t/50rad/sample.With 	 Dl(z) 	D2(2) 
each plant realized in controllable canonical form, we take 30 

Dl = 0 

and, therefore , the disturbance is not matched. 

Example 7.4 (SISO , minimum-phase , stable plant, distur-
bance rejection) Consider the plant G zu  with d=3, poles 
0.5±0.5 j , -0.5±0.5 j, ±0.9, ±0.7 j, and minimum-phase zeros 
0.3±0.7 j, -0.7±0.3 j, 0.5. Taking n,-  15, p=1, a(k)=25, and 
r=3 with B., given by (56), the closed-loop response is shown 
in FIG. 8. The control algorithm converges (see FIG. 9) to an 
internal model controller with high gain at the disturbance 
frequencies , as seen in FIG. 10. 

Example 7 . 5 (SISO , nonminimum-phase, stable plant, dis-
turbance rejection) Consider the plant Gzu  with d=3, poles 
0.5±0.5 j , -0.5±0.5 j , ±0.9, ±0.7 j , minimum-phase zeros 
0.3±0.7 j , -0.7±0.3 j , and outer nonminimum-phase zero 2. 
We take n,-15, p=1, r=7, and a(k)=25. The Markov-param-
eter polynomial used to construct B zu  as in (56) is given by 
p,(q)-q4-1.2g3 -0.96g2-0.56q-0.75, with roots 0.01±0.71 j, 
-0.77, 1.94. Note that the root 1.94 approximates the zero 2. 
The closed-loop response is shown in FIG. 11. 

To illustrate the effect of the learning rate a(k), the closed-
loop response is shown in FIG. 12 for a(k)=2500 and all other 
parameters unchanged . Note that , with a(k)=2500 , the initial 
transient is reduced at the expense of convergence speed. 

Example 7.6 (SISO , minimum-phase, unstable plant, dis-
turbance rejection). Consider the plant G zu  with d=3, poles 
0.5±0.5 j , -0.5±0.5 j , ± 1.04, 0 . 1±1.025 j , andminimum-phase 
zeros 0.3±0.7 j, -0.7±0.3 j, 0.5. We take n,-  15, p=1, a(k)=25, 
and x-10 with Bzu  given by (56). The closed-loop response is 
shown in FIG. 13.  

where D,(z) is in given n Example 7.7, D 2(z)z3 -0.222 + 
0.34z+0.232, d=1, and 

35 	 0 1 
H1-

[0 0] 

Consequently, Gzu  has poles -0.5±0.5 j, 0.3±0.7 j, ±0.7 j, 
40 -0.4 , 0.9, minimum-phase transmission zero 0.5, and outer 

nomuinimum-phase transmission zero 2. We taken 15,p=2, 
a(k)=1, and r°8 with Bzu  given by (56). The closed-loop 
response is shown in FIG. 15. 

Example 7.9 (MIMO, nonminimum -phase, unstable plant, 
45 disturbance rejection ) Consider the two -input, two-output 

plant 

Z2 -0.5z Z2 -2-2 

50 	
Cv  (Z) = 	

D3 (2) 	D4(Z) 

Z-0.5 	Z-2  

D3(2) 	D4(2) 

55 Where 

D3 (2) ° 25  -1.124  + 1.731Z3  -1.49422  + 0.608z - 0.4679, 

60 	D4(Z) ° Z3  + 1.4Z2  + 0.9z + 0.2, d = 1, and H, = 0 01 

Consequently, Gzu  has poles -0.5±0.5 j, ±0.7 j, 0.1±1.025 j, 
-0.4, 0.9, minimum-phase transmission zero 0.5, and outer 

h t 	 2 W tak -10 -1 65 norm mum-p ase ransmisslonzero . e en, ,p- , 

	

Example 7.7 (MIMO, minimum-phase, stable plant, dis- 	a(k)=1, and x-10 with Bzu  given by (56). The closed-loop 

	

turbancerejection ). Considerthetwo -input, two-outputplant 	response is shown in FIG. 16. 
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NUMERICAL EXAMPLES 

Off-Nominal Cases 

We now revisit the numerical examples of the preceding 
section to illustrate the response of the RCF adaptive control 
algorithm under conditions of uncertainty in the relative 
degree and Markov parameters as well as measurement noise 
and actuator and sensor saturation. In each example, the adap-
tive controller gain matrix 0(k) is initialized to zero. Unless 
otherwise noted, all examples assume x(0)-0. 

Example 8.1 (Ex. 7.5 with Markov-parameter multiplica-
tive error) Reconsider Example 7.5 with Markov-parameter 
multiplicative error. For controller implementation, we use 
the estimate B &,q B, where qER is varied between 0.3 and 5. 
For i=1, ... , r, the estimated Markov parameters H, -CAz-1 B 
are used to construct Bzu  given by (56). Taking n,-15, p=1, 
r=10, and a(k)=1000, the closed-loop performance is com-
pared in FIG. 17. In each case, the control is turned on at k -0, 
and the performance metric is given by 

9 	 (59) 

ko ° m k ? 9 : 10 9 lz(k — i)I < 0.0 1, 
=o 	 J 

that is, ko  is the minimum time step k such that the average of 
{Iz(k-i)1} z_09  is less than 0.01. FIG. 17 shows that the best 
performance is obtained for r1=1,  which corresponds to the 
true value of B. As 'q is decreased, convergence slows signifi-
cantly. 

In the case where the sign of the first nonzero Markov 
parameter (the sign of the high-frequency gain) is wrong, that 
is, H3=-731  the simulation fails. These simulations suggest 
that performance degradation due to an unknown scaling of 
the Markov parameters provides a useful measure of adaptive 
gain margin. These findings are consistent with the adaptive 
gain-margin results. 

Example 8.2 (Ex. 7.5 with unknown latency). A known 
latency of 1 steps can be accounted for by replacing d by d+1 
in the construction of Bzu . However, we now assess the effect 
of unknown latency in Example 7.5, which is equivalent to 
uncertainty in the relative degree d. The system has relative 
degree d=3. For controller implementation, we use the erro-
neous estimate d of d and take n,-15, p=1, a(k)=1000, and 
r=10 with Bzu  given by (56). Letting d be either 2, 3, 4, 5, or 
6, Table 2 compares boththe performance metric (59) and the 
maximum value of I z(k) I for each estimate d of d. In each 
case, the control is turned on at 1~-0. The best performance is 
obtained for d={1=3. 

TABLE 2 

Closed-loop performance comparison of the stable, nonminimum-phase, 
silo plant in Example 7.5 with unknown latency. 

ko 	 max I z(k) I 

2 1870 12.3 
3 531 9.4 
4 847 8.5 
5 4633 10.9 
6 11660 3.2 x 109  

For controller implementation, we use the erroneous estimate d ofd and take n, = 15, p= 1, 
adc) = 1000, and r = 10 with S s  given by (56). The best performance is obtained for d = d 
=3 

20 
These simulations show the sensitivity of the adaptive con-

troller to unknown errors in the relative degree d, which 
provides a useful measure of adaptive phase margin. 

Example 8.3 (Sensitivity to nonrninimum-phase-zero 
5 uncertainty). Consider the plant Gzu  with d=1, H 1 =1, poles 0, 

0.5, and outer nomuinimum-phase zero 2. The plant is subject 
to disturbance w(k) given by (58), and thus, with the plant 
realized in controllable canonical form, we take D I =Iz  and 
EO-0. Furthermore, we assume y=z and let ~(k) be given by 

10 (37). To illustrate the sensitivity of the adaptive control algo-
rithm to knowledge of the nomuinimum-phase zero, we let 
Bzu be given by (51), which is constructed using the first 
nonzero Markov parameter H 1 =1, the nomuinimum-phase 
zero 2, and a multiplicative error rl  e ][8, that is, N(q)=q-2r) . We 

15 vary 'q between 0.75 and 2.5 with n,-  I0, p=1, and a(k)=25. A 
closed-loop performance comparison is shown in FIG. 18. In 
eachcase, the control is turned on atk -0, and theperformance 
metric is given by (59). The best performance is obtained for 
r1=1.05, which is close to the true value of the nonminimum- 

20 phase zero. Note that the adaptive control algorithm is more 
robust to larger values of 'q than smaller values. 

Example 8.4 (Ex. 7.6 with stabilization and noisy measure-
ments). Reconsider Example 7.6 with no commands or dis-
turbances. For stabilization, we take D, and E 0  to be zero 

25 matrices. To assess the performance of the adaptive algorithm 
with added sensor noise, we modify (2) and (3) by 

y(k)=z(k) E rx(k)+Eo w(k)+v(k), 	 (60) 

where v(k)Ekz is Gaussian white noise with mean v=2 and 
30 standard deviation 6=0.1. We take n,=15, p=1, a(k)=25, and 

r --3 with Bzu  given by (56). For the initial condition 
x(0)=[=0.43 -1.67 0.13 0.29 -1.15 1.19 1.19 -0.04]? 

the closed-loop response is shown in FIG. 19. 
Example 8.5 (Ex. 7.4 with actuator and sensor saturation). 

35 Reconsider Example 7.4 with the additional assumption that 
both the control input and sensor measurement are subject to 
saturation at ±2. We take n, -  I5, p=1, a(k)=25, and r=3 with 
Bzu  given by (56). The closed-loop response shown in FIG. 20 
indicates that the saturations degrade steady-state perfor- 

40 mane. 

Example 8.6 (Ex. 7.4 with command following and actua-
tor saturation). Reconsider Example 7.4 with step command 
given by w(k)=1. With the plant realized in controllable 
canonical form, we take D l -0 and E0--L Taking n,-  I5, p=1, 

45 a(k)=25, and r=3 with B zu  given by (56), the closed-loop 
responses are shown in FIG. 21 with and without actuator 
saturation at ±0.1. With actuator saturation, the performance 
variable reflects the capability of the saturated control. 
Model Reference Adaptive Control 

50 	Model reference adaptive control (MRAC), as illustrated in 
FIG. 22, is a special case of (1)-(3), where 

A 
z=Y1 - Y. 

55 

is the difference between the measured output y, of the plant 
G and the output y m  of a reference model G m . For MRAC, the 
exogenous command w is assumed to be available to the 

60 controller as an additional measurement variable y z . Unlike 
standard MRAC methods, retrospective cost adaptive control 
does not depend on knowledge of the reference model G m . 

We now present numerical examples to illustrate the 
response of the RCF adaptive control algorithm for model 

65 reference adaptive control (see FIG. 22). Unless otherwise 
noted, the adaptive controller gain matrix 0(k) is initialized to 
zero. 
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Boeing 747 Longitudinal Dynamics 
Consider the longitudinal dynamics of a Boeing 747 air-

craft, linearized about steady flight at 40,000 ft and 774 ft/sec. 
The inputs to the dynamical system are taken to be elevator 
deflection and thrust, while the output is the pitch angle. The 
continuous-time equations of motion are thus given by 

u —0.003 0.039 0 —0.322 u (61) 

N' —0.065 —0.319 7.74 0 w 

q 0.020 —0.101 —0.429 0 q 

9 0 0 1 0 0 

22 
reference model G m  consists of the basic missile longitudinal 
plant with X=1 and the classical three-loop autopilot. An 
actuator amplitude saturation of ±30 deg —±0.524 rad is 
included in the model, but no actuator or sensor dynamics are 

5  included. 
The goal is to have the missile follow a pitch acceleration 

command w consisting of a 1-g amplitude 1-Hz square wave. 
The performance variable z is the difference between the 
measured pitch acceleration A z  and the reference model pitch 

10 acceleration Az*, that is, 

Z °=A —A. 

0.010 	1 

—0.180 —0.040 6e  

—1.160 0.598 ~6T ~ ' 

0 	0 

u (62) 

Y= f 	l f 
0 	0 	01 + [ 01J W ' LYzJ  — LO q 

0 

Z = Y1 — Ym, 	 (63) 

where w is the exogenous command and y m  is the output of 
the reference model 

Ym  (s) 	0.0131 
Cm 

 (s) W(S) s2  + 0.16s + 0.0131 

We discretize (61)-(64) using a zero-order hold and sam- 35 
pling time TS—O.OI sec. The reference command is taken to be 
a 1-deg step command in pitch angle. The controller order is 
n,—  I0withparametersp — LoL(k)=40,andr — I0withBzu given 
by (56). The closed-loop response is shown in FIG. 23 for 
zero initial conditions. 	 40  
Missile Longitudinal Dynamics 

We now present numerical examples for MRAC of missile 
longitudinal dynamics under off-nominal or damage situa-
tions. The missile longitudinal plant is derived from the short 
period approximation of the longitudinal equations of 45 
motion, given by 

x— ~ 29 0 . 26  01X 
 +A  ~ -331.41"' 	

65) 
50 

Y= ~
-1203.34 Ojx+;L ~ -130.511" 	 (66) 

where 
55 

xx ~q~ Yx ~q~ 
 

The closed-loop response is shown in FIG. 24 for X3. Since 
the plant and reference model are identical in the nominal 
case, the adaptive control input u_-0. 

All of the following examples use zero initial conditions 
and the same adaptive controller parameters. The adaptive 
controller is implemented at a sampling rate of 300 Hz. We 
take n,-3, p3, and x-20 with Bzu  given by (56). A time 
varying learning rate a(k)=75k+1 is used such that, initially, 
controller adaptation is fast, and, as performance improves, 
the adaptation slows. The learning rate is identical for each 
simulation. System identification using the observer/Kalman 
filter identification (OKID) algorithm is used to obtain the 20 
Markov parameters required for controller implementation. 
The offline identification procedure is performed with a 
nominal simulation (X-1) by injecting band-limited white 
noise at the adaptive controller input u_ and recording the 
performance variable z while the autopilot is in the loop. No 
external disturbances are assumed to be present during the 
identification procedure. 

Example 9.1 (50% control effectiveness). Consider 
X=0.50. FIG. 25 shows simulation results with the adaptive 
controller turned off, that is, autopilot-only control. Now, 
with the autopilot augmented by the adaptive controller, 
simulation results are shown in FIG. 26. After a transient, the 
augmented controllers provide better performance than the 
autopilot-only simulation. 

Example 9.2 (25% control effectiveness). Consider 
X=0.25. With the adaptive controller turned off, that is, auto-
pilot-only control, the simulation fails. With the autopilot 
augmented by the adaptive controller, simulation results are 
shown in FIG. 27. After a transient, the augmented controllers 
stabilize the system, whereas the autopilot-only simulation 
fails. 

FIG. 27 shows that the total control input a reaches the 
actuator saturation level of ±30 deg. To reduce the initial 
transient, we initialize the adaptive controller with the con-
verged control gains 0 from the 50% control effectiveness 
case. As shown in FIG. 28, the initial transient is reduced as 
compared with initializing the control gains to zero. In this 
case, the actuator saturation level is not reached. 

CONCLUSION 

15 

20 

25 

30 

(64) 

and XE(0,1] represents the control effectiveness. Nominally, 
X=1. 

The open-loop system (65), (66) is statically unstable. To 
overcome this instability, a classical three-loop autopilot is 
wrapped around the basic missile longitudinal plant. The 
adaptive controller then augments the closed-loop system to 
provide control in off-nominal cases, that is, when X<1. The 
autopilot and adaptive controller inputs are denoted u P  and 
ua,, respectively. Thus, the total control input u-1P+ua,. The 

We presented the RCF adaptive control algorithm, system, 
6o and method and demonstrated its effectiveness in handling 

nonminimum-phase zeros through numerical examples illus- 
trating the response of the algorithm under conditions of 
uncertainty in the relative degree and Markov parameters, 
measurement noise, and actuator and sensor saturations. 

65 Bursting was not observed in any of the simulations. We also 
suggested metrics that can serve as gain and phase margins 
for discrete-time adaptive systems. Development of 
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Lyapunov-based stability and robustness analysis of the RCF 
adaptive control algorithm as well as development of a theo-
retical foundation for analyzing broadband disturbance-re-
jection properties of the controller is anticipated. 

The foregoing description of the embodiments has been 
provided for purposes of illustration and description. It is not 
intended to be exhaustive or to limit the invention. Individual 
elements or features of a particular embodiment are generally 
not limited to that particular embodiment, but, where appli-
cable, are interchangeable and can be used in a selected 
embodiment, even if not specifically shown or described. The 
same may also be varied in many ways. Such variations are 
not to be regarded as a departure from the invention, and all 
such modifications are intended to be included within the 
scope of the invention. 

What is claimed is: 
1. A method for adaptive control of nonminimum phase 

systems, said method comprising: 
receiving input data; 
distinguishing between said input data and modified data; 
determining control gains from said input data and esti-

mates of nonminimum phase zeros using a modified 
quadratic cost criterion that uses a retrospective perfor-
mance vector; 

calculating a control signal based on said control gains, 
said input data, and said retrospective performance vec-
tor; and 

outputting said control signal. 
2. The method according to claim 1 wherein said determin-

ing control gains comprises determining control gains using 
estimates of a relative degree, a first nonzero Markov param-
eter, and nonminimum phase zeros. 

3. The method according to claim 1 wherein said determin-
ing control gains comprises determining control gains using 
an explicit minimizer of said modified quadratic cost criterion 
to achieve a minimizer in a single operational step. 

4. The method according to claim 1 wherein said determin-
ing control gains comprises determining control gains using a 
one-step learning penalty. 

5. The method according to claim 1 wherein said determin-
ing control gains from said input data and estimates of non-
minimum phase zeros using a modified quadratic cost crite-
rion comprises a disturbance rejection response. 

6. The method according to claim 1 wherein said determin-
ing control gains from said input data and estimates of non- 

24 
minimum phase zeros using a modified quadratic cost crite-
rion comprises a command following response. 

7. The method according to claim 1 wherein said determin-
ing control gains from said input data and estimates of non- 

5 minimum phase zeros using a modified quadratic cost crite-
rion comprises a stabilization response. 

8. The method according to claim 1, wherein said deter-
mining control gains further comprises adjusting a rate of 
convergence. 

10 9. A system for adaptive control of nonminimum phase 
systems, said system comprising: 

a device receiving input data; 
a device distinguishing between said input data and modi-

fied data; 
is 	a controller determining control gains from said input data 

and estimates of nonminimum phase zeros using a modi-
fied quadratic cost criterion, said controller calculating a 
control signal based on said control gains and said input 
data and outputting said control signal. 

20 	10. The system according to claim 9 wherein said control- 
ler determines control gains using a relative degree, a first 
nonzero Markov parameter, and nonminimum phase zeros. 

11. The system according to claim 9 wherein said control-
ler determines control gains using estimated Markov param- 

25 eters to obtain estimates of a relative degree, a first nonzero 
Markov parameter, and nonminimum phase zeros. 

12. The system according to claim 9 wherein said control-
ler determines control gains using an explicit minimizer of 
said modified quadratic cost criterion to achieve a minimum 

30 in a single operational step. 
13. The system according to claim 9 wherein said control-

ler determines control gains using a one-step learning penalty. 
14. The system according to claim 9 wherein said control-

ler employs a modified quadratic cost criterion to define a 
35 disturbance rejection response. 

15. The system according to claim 9 wherein said control-
ler employs a modified quadratic cost criterion to define a 
command following response. 

16. The system according to claim 9 wherein said control-
40 ler employs a modified quadratic cost criterion to define a 

stabilization response. 
17. The system according to claim 9, wherein said control-

ler comprises a device for adjusting a rate of convergence. 
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